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we deduce that (1 a) belongs to the subgroup. Since (1 a) and its

conjugates generate SL2(K) as a runs over all elements of K, the theorem
follows.
The previous method can be used to establish the easier
THEOREM 12. Every normal subgroup of the general linear group GL.(K),

which is not contained in the center, contains SLn(K), except the cases when
n = 2 and K has 2 or 3 elements.

1 Cartan, H., Ann. ccole normale superieure, 64, 59-77 (1947), Theorem 4.
2 Dieudonne, J., Bull. Soc. math. France, 71, 27-45 (1943).
3 For the definition and properties of PSL<(K), see Dieudonn6.6
4 Dickson, L. E., Linear Groups, Leipzig, 1901.
5 Van der Waerden, B. L., Gruppen von linearen Transformationen, Berlin, 1935, p. 7.
6 Iwasawa, M., Proc. Imp. Acad. Japan, 17, 57 (1941).
7 The author had some difficulty in understanding Dieudonn&'s proof. In fact, all

the parabolic elements of PSL2(K) do not form a single conjugate set in PSL2(K).
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1. Introduction.-In the classical theory of representations of finite
groups by linear transformations a representation s -> U. of a finite group
is said to be imprimitive if the vector space H in which the U, act is a
direct sum of independent subspaces M,, M2, ..., M,, in such a manner
that each U8 transforms each Mi into some Mj. In the present note we
shall discuss a generalization of this notion which is more suitable for use
in connection with infinite dimensional representation because it allows
the direct sum decomposition to be continuous as well as discrete. Our
principal theorem (well known for finite groups) deals with weakly (and
hence strongly) continuous unitary representations of separable locally
compact groups. It asserts that the pair consisting of such a representa-
tion and a "transitive system of imprimitivity" for it defines an essentially
unique subgroup Go and an essentially unique representation L of Go from
which the original pair may be reconstructed in a quite explicit manner.
This result has a number of applications. A recent theorem' of the author
which implies the Stone-von Neumann theorem on the uniqueness of
operators satisfying the Heisenberg commutation relations is included
as a special case. In addition it may be used to give a complete determi-
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nation of the irreducible unitary representations of the members of a
class of locally compact groups which are neither compact nor Abelian.

2. Definition of Imprimitivity.-Let s -- U,; -M1, M2, . . ., Mn, be an
imprimitive representation in the classical sense. Suppose that the
U, are unitary and that the Mi are mutually orthogonal. Let M denote
the set of integers 1, 2, . . ., n. For each s in the group G and each j e M
let (j)s be the index of the subspace into which U-1 carries Mj. Let Pj
denote the projection ofH on Mj. Then it is easy to see that U,P1 US-1 =
P(j),-1. More generally if PE is defined by the equation PE = E,( e)PJ
for each E C M then U,PEU,- = P(E)s-'. The motivation for the
following definition should now be clear. Let M be a separable locally
compact space and let G be a separable locally compact group. Let x,
s -> (x)s denote a mapping of M X G onto M which is continuous and is
such that (a) for fixed s, x -> (x)s is a homeomorphism and (b) the resulting
map of G into the group of homeomorphisms of M is a homomorphism.
Let P(E -> PE) be a o homomorphism of the o Boolean algebra of all Borel
subsets of M into a a- Boolean algebra of projections in a separable Hilbert
space H such that PM is the identity I. Let U(s -> U.) be a representation
of G in H; that is a weakly (and hence strongly) continuous homomorphism
of G into the group of unitary operators in H. If USPEUr1' = P(E)S-1
for all E and s and if PE takes on values other than 0 and I we shall say
that U is imprimitive and that P is a system of imprimitivity for U. We
shall call Il the base of P. It is to be observed that P defines in .if a
family of null sets and that there exists in Al a family of mutually equiva-
lent measures whose sets of measure zero are precisely these null sets.
The null sets are those sets E for which PE = 0 and the measures are those
of the form ,u(E) = (PEf, f) where f is an element2 in H such that PEf = 0
implies PE = 0.

3. Ergodicity and Transitivity.-When for each x and y in .f1 there
exists s in G for which (x)s = y it is natural to say that P is a transitive
system of imprimitivity for U. When Al' is finite every system of im-
primitivity decomposes in a natural manner into transitive ones corre-
sponding to the orbits of M under G. In general, however, the decomposi-
tion of M into orbits is not reflected in a corresponding decomposition of
H. It is rather the decomposition of M into ergodic or metrically transi-
tive parts which is relevant. Accordingly we define a system of imprimi-
tivity P to be ergodic if G acts ergodically on the base M of P; that is,
whenever (E)s differs from E by a null set for all s e G then E is itself a
null set or the complement of one. In view of the current literature on the
decomposition of measures the study of general systems of imprimitivity
may be expected to be reducible to the study of ergodic systems.

Ergodic systems which are not also transitive are rather difficult to
handle and such results as we have at present are far from definitive. This
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note will deal exclusively with transitive systems. Fortunately in some
applications it can be shown that only transitive systems can arise. Specifi-
cally let us say that the orbits of M under G are regular if there exists a
countable family E1, E2, . . . of Borel subsets of M, each a union of orbits
such that each orbit of M is the intersection of the members of a sub-
family En,, En,, .... Then the following theorem is easily proved.
THEOREM 1. If the orbits of M under G are regular then for each ergodic

system of imprimitivity based on M there is an orbit C such that PMC = 0.
4. Formulation of the Principal Theorem.-Let P be a transitive system

of imprimitivity for the representation U of the separable locally compact
group G. Let xo be a point of the base M of P. Let Go be the set of all
s e G for which (xo)s = xO. Then Go is a closed subgroup of G and the
mapping s -> (xO)s of G on M defines a one-to-one Borel set preserving
map of the homogeneous space G/Go of right Go cosets onto M. Thus P
is equivalent in an obvious sense to another system of imprimitivity for
U whose base is the homogeneous space G/Go. In general we shall define
a pair to be a unitary representation for the group G together with a par-
ticular system of imprimitivity for this representation. If U, P and U', P'
are two pairs with the same base M we shall say that they are unitary
equivalent if there exists a unitary transformation V from the space of
U and P to the space of U' and P' such that V-'U/'V = Us and
V-1PE'V = PE for all s and E. It follows from the above remarks that
the problem of determining to within unitary equivalence all pairs based
on a given M may always be reduced to the corresponding problem in
which M is a homogeneous space. We shall accordingly confine ourselves
to this case. The arbitrariness in the choice of xO has the effect only of
providing us with several essentially equivalent complete systems of in-
variants for the pairs based on a given M.

Preparatory to stating our theorem we describe a method (which will
prove to be general) of constructing pairs based on a given G/Go. Let
,u be a finite Borel measure on G/Go which is "quasi invariant" in the sense
that the action of G on G/Go preserves null sets.3 Let L(t -> Le) be a
representation of Go by unitary operators in a Hilbert space HO. Then
let HL be the set of all functions f from G to HO such that: (a) f is a Borel
function in the sense that (f(s), v) is a Borel function of s for all v e HO;
(b) for all s e G and all e E- Go, f(ts) = LUf(s); and (c) (f(s), f(s)) (which
by (b) is constant on the right Go cosets) defines a summable function on
G/Go. By a more or less obvious adaptation of the proof of the Riesz
Fischer theorem4 it may be shown that HL is a Hilbert space with respect
to the inner product (f, g)L==fQ/o.(f(s), g(s))d, and the obvious linear
operations. Naturally functions which are equal almost everywhere are
to be identified. Now let p be the function on G X G/Go which for each
fixed s is the Radon Nikodym derivative of the translate of ,u by s with
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respect to M itself. Then regarding p, as we may, as a function on G X G
let UJ for all s e G and f e HL be defined by the equation (Uf) (t) =

f(ts)/IVp(s-, ts). It is readily verified that U, is a unitary transformation
of HL onto itself and that the mapping s -> U8 is a representation of G. For
each Borel subset E of GIGo let 4 be its characteristic function regarded
as a function on G. For f e HL let (P4D (t) = 4(t)f(t). It is easy to see
that the mapping f -> PEf is a projection and that U and P together
constitute a pair in the sense of the above definition. We shall call it
the pair generated by L and ,. We can now formulate our main theorem.
THEOREM 2. Let G be a separable locally compact group and let Go be a

closed subgroup of G. Let U', P' be any pair based on GIGo. Let , be any
quasi invariant measure in GIGo. Then there exists a representation L
of Go such that U', P' is unitary equivalent to the pair generated by L and
A. If L and L' are representations of Go and ,u and ,' are quasi invariant
measures in GIGo then the pair generated by L' and IA' is unitary equivalent
to the pair generated by L and ,u if and only'ifL and L' are unitary equivalent
representations of Go.

5. Outline of Proof.-We shall give the proof in outline only leaving
relatively routine details to the reader. Moreover we shall assume
familiarity on the part of the reader with the paper cited in reference 1
and will omit arguments similar to those given there. We shall refer to
this paper as SVN. The proof falls naturally into two parts. First we
show that every pair defines a representation of Go unique to Within unitary
equivalence and that two pairs defining equivalent representations of Go
are unitary equivalent. Then we complete the proof by showing that the
representation of Go defined by the pair generated by an arbitrary L and
IA is unitary equivalent to L itself.
Given a pair U',P' based on GIGo we note first that the set of all PE'

is a uniformly n dimensional Boolean algebra of projections (n = 1, 2,
co) in the sense of Nakano (see SVN 5). This follows from the

fairly easily proved fact that G acting on GIGo is ergodic. Let N denote
an n dimensional identity representation of Go, let ,u be a quasi invariant
measure in G/Go and let W,P be the pair generated by N and IA. Just as
in No. 6 of SVN it is possible to show that the pair U',P' is unitary equiva-
lent to the pair U,P where P comes from the pair W,P above and U is a
suitable representation of G. We define Q, as U,,W8- and observe that
QSPE = PEQ, for all E and s. It follows as in SVN that there exists a
weakly Borel function Q' from G X G to the group of unitary operators
in the space H1 in which the N, act such that for each s in G we have
(Qjf)(t) = Q'(s, t)f(t). The identity Q(sls2, t) = Q (sl, t)Q (s2, tsO)
holding for almost all triples is established as in SVN and from it the ex-

istence of a weakly Borel function B such that Q-(s, t) = B-1(t)B(ts)
almost everywhere. The fact that the functions in HN are constant on the

54 PROC. N. A. S.



MATHEMA TICS: G. W. MACKEY

right Go cosets implies that Q'(s, it) = Q(s, t) for all t e Go almost every-
where in s and t. This implies in turn that B-1(tt)B(Qts) = B-'(t)B(ts)
in the same sense or equivalently that B(Qts)B-'(ts) = B(tt)B-'(t). In
short for each t e Go, B(tt)B-'(t) is almost everywhere equal to a certain
constant operator Lt. A simple argument shows that (Ltvo, vl) is of the
form fJ,41(t) (B(t)v2, v1) for a dense set of vo's. Here vo, v, and v2 are ele-
ments in Hi and ,t1 is a continuous complex valued function vanishing
outside of a compact subset of G. It follows readily that (Ltvo, v,) is con-
tinuous in t and, since LE't, = LEILt2, that L(t -- Lt) is a representation
of Go. Of course L may depend upon the choice of ,u, the choice of the
unitary map of the given Hilbert space on HN and the choice of B. How-
ever, the fact that any two IA's have the same null sets guarantees the lack
of dependence of L on ,u. As to the other possible dependencies note that a
unitary map X of HN on itself which commutes with all PE is defined by an
equation of the form Xf(t) = X(t)f(t) where X(t) is a unitary operator on
H1 for each t and X(t) is a weakly Borel function of t. Moreover X(Qt) =
X(t) for t e Go. It is readily calculated that the effect on Q of a trans-
formation by X is to replace it by R where R(s, t) = X-'(t)Q(s, t)X(ts).
Now if C-I(t)C(ts) = X'-(t)B-I(t)B(ts)X(ts) it follows that B(t)X(t)C-'(t)
is (modulo null sets) independent of t. Thus for some constant operator
K we have C(t) = KB(t)X(t) so that C(Qt)C-'(t) = KB(tt)X(it)X-1(t)-
B-I(t)K-1 = KLtK-'. In short our original pair and ini fact the unitary
equivalence class to which it belongs determine L to within unitary equiva-
lence. Conversely a simple reversal of the argument shows that pairs
leading to unitary equivalent L's must be themselves unitary equivalent.
Now let L' be an arbitrary representation of Go and let U',P' be the

pair generated by L' and a quasi invariant measure ,u in G/Go. By the
argument of the preceding paragraph there is a unitary map V-1 of HL'
on some HN such that V-'PE'V = PE where W,P is as before the pair
generated by N and ,u and N is an identity representation of Go on a Hilbert
space H1. It is not difficult to show that there exists a weakly Borel
function V- defined on G whose values are operators from H1 to the space
H2 in which L' operates such that (Vf)(t) = V(t)f(t). It follows from
the fact that V is unitary that V-(t) is unitary from H1 into H2 for almost
all t and it follows from the fact that Vf e HL' that for each t e Go, V_(,t) =

LE'V'(t) for almost all t. Now the Q8 of the preceding paragraph here
take the form V-1 U8,VW8' so that U,' VW8' = VQ,. Hence V- (ts) =
V-(t)Q-(s, t) or V-(ts) = V-(t)B-'(t)B(ts) or V-(ts)B-1(ts) = V-(t)-
B-1(t). Thus there exists a norm preserving operator K independent of
t such that V-(t) = KB(t) for almost all t. If K were known to map
HI onto the whole of H2 we could write B(t) = K'- V(t) and conclude at
once that B(it)B- (t) = K-LE' V'(t) V-'(t)K =K-'LeKandhencethatthe
L for U',P' is unitary equivalent to L'. In order to show that K is indeed
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an onto mapping we must make use of certain facts about the space HL'
which so far as we know at this point might be zero dimensional. For
each continuous function w from G to H2 which vanishes outside of a

compact subset of G let wv be defined by the equation (w(t), v) =

(L{t-`w({t), v)dt for all v in HI and all t in G. This function may be shown
to be a continuous member of HL' which vanishes outside of a set whose
image in GIGo is compact. Arguments of a fairly routine nature show
that for each t e G the vectors wv(t) span H2. Now suppose thatK does not
map H1 onto H2. Choose vo orthogonal to the range of K. Consider an

arbitrary member of HL' of the form wv. We have fw(t) = V-(t)f(t) for
some f and almost all t. But V-(t)f(t) is in the range of K for almost all t.
Thus, since wv is continuous we can conclude that (wv(t), vo) = 0 for all t.
Hence for all t, (w(t), vo) = 0 for all wv and this contradicts the fact that
the wv(t) span for each t.

6. Reducibility.-The natural question concerning the connection
between the reducibility of a pair U,P and the reducibility of the defining
representation of Go is easily answered. If T commutes with all Lt then
a transformation T- taking HN into HN is defined by the equation (T-f)
(t) = B-'(t)TB(t)f(t) where B is the function used in defining L. Then,
as is easily seen T -* T7 is a *-isomorphism of the ring of all bounded linear

operators which commute with all the Lt onto the ring of all bounded linear
operators whichicommute with all the U, and all of the PE. In particular
the Us and the PB are simultaneously reducible if and only if L is a re-

ducible representation of Go.
7. Application to the Determination of Group Representations.-Let G

be a separable locally compact group and let G1 be a closed normal Abelian
subgroup of G. Let G" denote the character group of G1. Every member
s of G defines an automorphism x > sxs-' of G1 and this in turn induces an

automorphism y G,(y)s of &. Now let U be any irreducible representa-
tion of G. Restricted to G1 it admits a spectral resolution defined by a

a homomorphism P of the Borel subsets of G, into a Boolean algebra of
projections in the Hilbert space H in which U acts. An obvious calcula-
tion shows that U,PEU-1 = P(E),-1. Thus P is a system of imprimitivity
for U. Since U is irreducible P must be ergodic. If we assume that
G1 is "regularly imbedded" in G in the sense that the orbits in G1 under G
are regular then Theorem 1 tells us that G1 may be replaced by a single
orbit. Let y be a point in this orbit and let Gv be.the closed subgroup of
all s for which (y)s = y. Theorem 2 tells us that U is unitary equivalent
to the first member of the pair generated by an irreducible representation
of G,.

If G is a "semi-direct product" of G1 and GIG1; that is, if there exists a

closed subgroup G2 such that GinG2 = e and G1G2 = G much more precise
information is available. The reader will have no trouble in verifying
the truth of

542



MATHEMA TICS: G. W. MACKEY

THEOREM 3. Let G1 be imbedded regularly in G and let G be a semidirect
product of G1 and G2.. From each orbit C of G1 under G2 choose a member
Yc. Let G, denote the set of all s e G2 uith (yc)s = Yc. Then the general
irreducible representation of G may be obtained as follows. Select an orbit
C and an irreducible representation 'L of GC. Let M be the irreducible repre-
sentation of G1-GC which coincides with L on Gc and is yc times the identity
on G1. Then the first member of the pair generated by M and a quasi invari-
ant measure in G/(G1.GC) is the required irreducible representation of G.
Every irreducible representation of G may be so obtained and two such are
unitary equivalent if and only if they come from the same orbit and unitary
equivalent L's.
When the irreducible representations of G2 and its subgroups are known

Theorem 3 furnishes a complete description of the irreducible representa-
tions of G. This is so, in particular, when G2 is Abelian. Moreover when
G2 is Abelian (and G1 is imbedded regularly in G) it tells us that every
irreducible representation of G is of "multiplier" form. More generally
any imprimitive representation of G generated by a one-dimensional
representation of a subgroup is unitary equivalent to a representation in
which the underlying Hilbert space is the space of square summable func-
tions on a homogeneous space and the action of the operator associated
with s is to translate by s and multiply by a certain function (the multi-
plier) of s and a variable point in the homogeneous space.
When G1 is not imbedded regularly in G Theorem 3 fails only in that it

does not describe all of the irreducible representations. The ones that
it does describe still exist and are irreducible. We have examples, however,
showing that in general there are many others. Their existence leads to
various kinds of pathological behavior which we expect to discuss at
another time. Since these "extra" representations are all infinite dimen-
sional, Theorem 3 provides an analysis of all finite dimensional representa-
tions for arbitrary semidirect products.
A number of well-known groups are regular semidirect products and

Theorem 3 includes as special cases results in the literature analyzing their
representations. Examples include the unique non-commutative two-
parameter Lie group' (a semidirect product of two lines) and the group of
Euclidean motions in two space6 (a semidirect product of the two-dimen-
sional translation group and the circle group). Wigner's6 reduction of the
representation problem for the inhomogeneous Lorentz group to that for
the homogeneous Lorentz group is also a consequence of Theorem 3 since
the former group is a semidirect product of a translation group and the
latter group.

8. Concluding Remarks.-In the mapping from a representation L of
Go to the pair it generates one can ignore P and obtain a mapping from
representations of Go to representations of G. It is not difficult to see that
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this mapping carries the regular representation of Go into the regular
representation of G. Thus (in view of No. 6) any analysis of the regular
representation of Go as a direct sum or integral will define a corresponding
analysis of the regular representation of G although the "parts" will not
necessarily be irreducible. This decomposition when Go is Abelian is the
subject of a recent interesting note of Godement.7 It was this note of
Godement together with a discussion of such a space for compact groups
given by A. Weil8 that suggested our definition of the Hilbert space HL.
There are a number of questions suggested by the considerations of this

note which we expect to investigate and report on at a later date. We
close by mentioning a few of these. (1) When is the representation U of
G generated by an irreducible representation L of Go itself irreducible?
(2) When G is finite, L and U are finite dimensional and L is irreducible
there is a classical theorem which says that the number of times that U
contains a given irreducible representation V of G is equal to the number
of times that the restriction of V to Go contains L. Weil8 has recently
extended this theorem to compact groups. One can ask whether (and in
what sense) it continues to be .true for general locally compact groups.
(3) To what extent is it true that an arbitrary irreducible representation
of G is the imprimitive representation generated by a primitive repre-
sentation L of an appropriate Go? How is the possible failure of this to
hold generally connected with the "extra" representations of non-regular
semidirect products? (4) Theorem 2 presumably can be used to prove
other theorems like Theorem 3. What are some of these? One notes in
particular that G1 can probably be replaced by any group whose representa-
tions can be decomposed into irreducible parts in a suitably manageable
manner.

* The author is a fellow of the John Simon Guggenheim Memorial Foundation on
leave from Harvard University and in residence at the University of Chicago. A
significant part of the work on this paper was done at each institution.
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LINKAGE STUDIES OF THE RAT. X

By W. E. CASTLE AND HELEN DEAN KING

UNIVERSITY OF CALIFORNIA AND WISTAR INSTITUTE

Communicated August 1, 1949

1. Fawn Linked with Agouti in Linkage Group V.-In an earlier paper of
this series, VIII, 1947,' a new color gene, fawn, was described and desig-
nated by the symbol, f. Preliminary linkage tests gave only negative re-
sults, but a cross between Agouti and fawn made by Dr. King indicated
possible linkage between the two genes. Additional crosses of this nature
made by Castle in Berkeley fully support that hypothesis.
A non-agouti black fawn stock, aaff, was crossed with a gray race, AAFF.

alf
The F, animals were gray of genotype AfF They were back-crossed to

the black fawn stock, yielding four classes of young, expected to be equal
numerically, unless linkage exists between A andf. The four genotypes ex:
pected and their observed frequencies were as follows:

GRAY FAWN BLACK FAWN GRAY BLACK

Aaff aaff AaFf aaFf
245 310 358 294

The two back-cross classes, gray fawn and black, would derive from cross-
over (recombination) gametes produced by the F, parent, whereas black
fawn and gray would derive from non-crossover gametes. Clearly the
non-crossovers exceed the crossovers numerically, indicating linkage.
The crossover percentage is 44.6 0.97, a highly significant statistical

result.
We conclude that genes A and f lie in the same fifth chromosome of the

rat. The linkage is loose but unmistakable.
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